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A numerical solution is presented for a system of differential equations of heat 
and mass transfer in a boundary layer in the laminar condensation of a gas on a 
horizontal tube. 

The promise held by the use of reactive nitrogen tetroxide as the coolant and working 
substance in nuclear power plants with fast reactors poses the problem of theoretically and 
empirically investigating the condensation of NaO~ on external surfaces [i]. In actual 
condensers in high-capacity power plants, condensation generally takes place on the outer 
surface of horizontal tubes. Condensation on an external surface has been studied for a 
chemically reactive gas only for the classical case of a vertical plate [2]. At the same 
time, the results of two experimental studies conducted to date on the condensation of nitro- 
gen tetroxide of nonequilibrium composition on a horizontal tube [3, 4] are not in satisfact- 
ory agreement in their estimates of the effect of the most important factor -- the kinetics 
of the chemical reaction. 

The present work theoretically investigates the condensation of reactive nitrogen 
tetroxide on the outer surface of a horizontal tube in an infinite volume. In the region of 
parameters being studied here, the reactive Na04 contains both condensing (N~O,, NOa) and 
noncondensing (NO, Oa) components. The following chemical reactions take place between these 
components: 

N20~-2NOv (i) 
2NO2~2NO+Ov (2) 

Reaction (i) is nearly in equilibrium, but reaction (2) takes place at a measurable rate 
[5]. This makes it necessary to consider the kinetics of the latter. 

The theoretical analysis will be based on the customary hypotheses of boundary-layer 
theory. They are examined in detail in [2] for the case of condensation. 

The energy, motion, continuity, and mass conservation equations of the noncondensing 
components for the gas phase have the form: 
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The corresponding equations for the liquid phase 
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The boundary condicions for sys=ems 
wall--liquid surface (y = O) 

r (x, 0) : T~,I, 

U z = V  t = O, 

while the following conditions of continuity of temperatures, axial velocities, 
and mass and heat flows are assigned at the phase boundary (y = 8 (x)): 

~z oh 
0!/ 

au~ + avz __o, ( 7 )  
Ox Oy 

OW~_ q_ gP sin__X = O, (8) 
Ix l 0/fl" z r 

d2Tl = 0. 
09,~ ( 9 ) 

(3)-(6) and (7)-(9) are formulated as follows: on the 

(i0) 

(lZ) 

shear stresses, 

T l ~ ~ Th6 = T 8 (Cho, P), (12) 

u l (x) = Uh(X), ( 13 )  

c)Ul _ 8U h 
~ 89 ~% 09 (14) 

d6 V l =,o h U h ~ - -  V h , (15) 
dx 

- - - - - -  %h -OThc~g @ Phrk( Uh ~xd6 __ Vh/] . (16) 

The conditions of nonpermeability of the noncondensing components through the phase 
boundary must also be satisfied 

d6 ' § ac~o I = o, 
%C~o u h G f -  Vh ] =~<.~, %0~ 

Og- 
( 17 )  

in the volume of the gas phase (at y + ~) 

Uh(~)=0, (18) 

T ( ~ ) = T ~ ,  (19) 

Ch0<<=Ck0~. (20) 

Using the "similitude" transforms proposed in [6], the above system of differential equa- 
tions in partial derivatives may be reduced to ordinary differential equations in dimension- 
less form. 

Let us introduce the dimensionless coordinate 

' q =  y (gr)'/~ 
- -  o r ( X )  (21) 

f u 

(22) 

(23) 

(24) 

and the dimensionless functions of current, temperature, and concentration of the k-th 
component 

_•,- -J-  / r ( x )  

r 
o (,0 - , 

T~ 

W ( r l ) -  C k o - - & o ~  , 
Cko~ -- Cho~ 

where P is the current function, satisfying the continuity equation 
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0~ 0~ U - -  , V =  ; 
Oy Ox 

X = x/r is a dimensionless coordinate; J(X), ~(X) are functions dependent on ~.. 

In the new variables, system (3)-(6) takes the form 

dO) (X) j2 (X) I -  F ' "  [(D (X) ja (X)I + FF" (D (X) d---~ 

_d_~_~.(X)__ j2 (X) + ~z (X) J (X) dX J _ IF,12 �9 (x) dX p 

(25) 

(26) 
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(27) 

(28) 

Equations (8) and (9) for the liquid layer are transformed in a similar manner. In order to 
perform the formal transformations and reduce Eqs. (26)-(28) to ordinary differential equa- 
tions, the terms dependent on X need to be excluded. For this, it is necessary that 

~b(X) J3 (X)=  as inX,  (29) 

O) (X) dq) (X_____~) ,/2 (X) = b sin X, 
dX-  (30) 

r (X) dJ (X_____._! _) j (X) = c sin X, (31) 
dX 

da) (X) _ eS (X), 
dX (32) 

where a, b, c, and e are constants. 

Values of the functions J(X) and ~(X) were found in [7] from Eqs. (29)-(32) and were 
tabulated. Taking account of (29)-(32) and setting dn/dx = 0 [2], we convert Eqs. (4)-(6) 
and (8), (9) to the following form 

F'" + 3FF"--2(F')Z-b[~(O - 1 ) = 0 ,  

W'"  q-- 3 Sc FW' -~ lhr = O, 
Er 3 ~1/4 
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0"----0. 

(33) 

(34) 

(35) 

(36) 

(37) 

In the new variables, boundary conditions (10)-(20) are written as follows: at ~ = 0 

f(O) = 0, / '  (0) = 0, O(0)  = Oo; ( 3 8 )  

at ~ = B8 in the liquid and at ~ = 0 in the gas 

F (0) = RI Ns), F' (0) = f' (%), F" (0) = f" (q~) R, 

O' -- ~t c.~ O' (~1~) -}- 3prh';h F (0) , 
)h Ch )h T-J  (x) 

W' = -- 3ScF  Cho , 
(Cho8 - -  Ck0 ~) 

(39) 

(4O) 

(41) 
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Fig. 1 Fig. 2 

Fig. i. Distribution of tangential component of velocity in 
the gaseous boundary layer for the angles: I) 30~ 2) 170; 3) 
60; 4) 151; 5) 90; 6) 120; 7) 120 ~ The dashed lines represent 
the "frozen" case, while the solid lines depict the case where 
allowance is made for reaction kinetics. U'I0 ~, m/sec. 

Fig. 2. Profiles of temperatures and concentrations of non- 
condensing components in the gaseous boundary layer for the 
angle: i) 30~ 2) 60; 3) 170; 4) 150; 5) 120; 7) 120 ~ . The 
curve notation is the same as in Fig. 1. 

,V 2 ' , ~--- _ t, z )  t " I )  v ~o h 
(42) 

F~=) = O, (43) 

@(~) = ]' (44) 

Cho(~) = Cko~. ( 4 5 )  

Equations (33)-(35) were solved numerically by the Runge--Kutta method with the use of 
Gill's modification [8]. The overall computing scheme was similar to that used in [2]. The 
convergence of the iteration processes in correcting the quantities f"(0), Cko(0) , and Twl 
was checked by Wegstein's method [9]. The inclusion of J(X), where X is dependent on the 
angle ~ in the dimensionless mass-conservation equation (34) for the noncondenslng components 
makes it impossible to obtain similitudinous solutions. The computations were performed for 
each specified angle at a pressure P = 2 bar, T = 333~ Cko = 0.3"10 -2 . The thermophysical 
properties of the system N204~- 2NO=~- 2NO + Os were taken from [10], while the kinetic con- 
stants were taken from [5]. 

In solving the above problem, wa also examined the "frozen" case. Here, the rate of the 
recombination reaction 2NO + Oa~-2NOa is assumed to be zero. This corresponds to the normal 
situation of condensation in the presence of inert noncondensing gases. 

Of the greatest interest in terms of analysis are the processes occurring in the gaseous 
boundary layer. Figures 1 and 2 show the distributions of the tangential velocity component, 
temperature, and concentration of a noncondensing component (0~). The maximums of the tangent- 
ial component inside the boundary layer are evidence of the considerable effect of natural 
convection on transport over nearly the entire volume of the gas. The maximum convection 
(according to the calculated data) for the chosen parameters corresponds to an angle �9 ~ 120 ~ 
from the vertical. It can be seen from Fig. 1 that the tangential velocity component is 
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Fig. 3. Distribution of diffusion coefficient 
and unit mass flow in relation to angle. Nota- 
tion is the same as in Fig. i. ~ , deg. 

significantly greater in the "frozen" case than in the "kinetic" case, i.e., chemical reac- 
tion promotes a certain reduction in natural convection. At the same time, the kinetics of 
the chemical reaction significantly reduces the content of noncondensing components at the 
phase boundary (Fig. 2), raises the saturation temperature, and smooths out the temperature 
profile (Fig. 2). 

A quantitative characteristic of transfer processes used in practical calculations for 
the condensation of a chemically reactive gas is the diffusion coefficient. This coefficient 
unambiguously characterizes the rate of the condensation process [i]. Figure 3 shows the 
distribution of the diffusion coefficient 

~o h ~ pDkgradCho~ 
Cho6 -- Ch0 

and the unit mass flow as a function of angle for the "frozen" and "kinetic" cases, other 
conditions being equal. It is apparent from the data in Fig. 3 that the recombination 
reaction between the noncondensing components weakens the adverse effect of convection and 
promotes a substantial increase in the rate of the condensation process. 

NOTATION 

g, acceleration due to gravity; r, external radius of tube; r k, latent heat of condensa- 
tion; Pr, Prandtl number; St, Schmidt number; T, temperature; x, distance along circumference; 
y, distance along radius beyond the cylindrical surface; p, viscosity; p, density; ~, kinematic 
viscosity. Indices: s, saturated; 6, liquid--gas interface; h, gas; q, liquid; wl, wall. 
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